手机浏览器扫描二维码访问
……
“……你看,这样就是一个椭圆曲线了。不过不是一般的圆锥曲线中的椭圆,而是域上亏格为1的光滑射影曲线。如果特征不等于2的话,那么仿射方程就是y^2=x^3+ax^2+bx+c。
那个BSD猜想的前置条件你肯定还记得吧?复数域上的椭圆曲线为亏格为1的黎曼面,整体域上的椭圆曲线是有限生成交换群。阿贝尔簇是椭圆曲线的高维推广。
所以这个时候我感觉就要把椭圆曲线化成魏尔斯特拉斯形式。这是我看了很多相关理论之后才找到的方法。这种变形就属于很机械的操作,前提条件是方程至少存在一个有理数点。
但显然这一步是成立的,之前我们已经证明了,所以我们就能得到这两个公式……”
乔喻一边说,一边在小桌板上用笔写着。
兰杰则认真听着,脖子脖子伸得老长,去看乔喻的整体解题过程,以及随手用坐标系画出的平面图。
“……很显然,我们现在得到了一条有着两个实部的经典椭圆曲线。右边的线,明显是连续延伸至正负无穷,左边的封闭椭圆曲线就是求解的关键了,给定这个方程任意解,都可以用等式还原我们要求的数值。”
“这一步最关键的地方就在于三元组(a:b:c)必须是投影曲线,这才可以随便乘什么常数,都能让方程成立。接下来就要用到双向有理等价了,我就直接在这个椭圆曲线上找一个最方便求解的有理数点,再带入原方程,就能求出解了。
其实到了这一步就简单了,椭圆曲线理论中,弦切技巧是生成新的有理数点的关键工具嘛。只要在椭圆曲线上找到两个已知的有理数点:P1跟P2,就能通过加法生成新的有理数点。
接下来就是直接在构造切线了,这个时候就自然形成了一个阿贝尔群,我们要引入O这个群中的零元,根据规则,任何一个点P跟O相加时结果依然是P。
……我们再通过作P点的切线,找到P跟曲线再次相交的点,然后再计算,如果得不到整数解,就继续用连接P和2P找到与曲线的第三个交点再与O点相连找到第四个交点,不行就重复这个步骤找第五个交点……
总之就是重复这个步骤,一直到找到对应的整数解为止。不过这一步靠手算肯定不行了,只能用电脑来算,找到那个值后,再用几何程序进行迭代。
最后计算9P才是整数,然后就是用得到的9P的值,做9次几何程序迭代,最后就能得出上述这个方程a,b,c的值了。整个解题思路就是这样。”
……
乔喻一口气讲了整整一个小时,只觉得口干舌燥,讲完之后,直接拿出插在前面座椅背上的矿泉水,狠狠地灌了几口。才开问道:“咋样,兰老师,你觉得我这种解法有普适性吗?”
兰杰回过神来,看了一眼乔喻,没有第一时间回答。
毕竟要判断出这种解法有没有普适性,首先他得完全理解这种解法。
让乔喻讲解,是因为他本以为乔喻在解这个方程时,不会用到太过复杂的数论方面内容。毕竟乔喻给他的印象一直是有天赋,但并没有针对数学系统的学习过。
而他不一样,大学时候也是系统学过抽象代数,数论入门这些课程的,不至于听不懂。
但显然他错了。
听乔喻讲解的时,他甚至回想起大学那段青葱岁月,被高级代数几何所支配的恐惧。
什么射影几何,模空间是真的让人很头大。他拼了命学最后也只是勉强过关,拿到了学分。当然班上也有很多厉害的同学,随随便便学学就能拿满分的。
这也是他研究生阶段选择组合数学,毕业之后回到星城当了个高中数学老师的原因。
真不是他不想做科研,继续读博士,然后争取能在高校当老师。
主要还是能力有限,真读不动了。
所以他是真没完全听懂乔喻求解这个方程的思路。
众所周知,如果要判断数学上某个求解方法对一类方程是否具备普适性,首先得完全理解整个求解思路。
这就很尴尬了。
本以为凭借他在大学积累的数学知识,听完乔喻现场讲解之后,肯定能给出一个答案的。
但现在他需要在丢人跟想办法掩饰之间做出一个选择。
大概沉吟了十秒钟后,兰杰选择了坦诚。
因为他是真不太会装。
“乔喻,说实话,我的水平不够,没法判断……所以这个问题你只能自己去尝试了。找几个同类的方程,用你这种方法去求解,如果最后都能得出正确答案的话,就可以动笔写论文了。
论文具体怎么解决问题,我没办法帮你。但我可以教你论文具体该怎么写。毕竟数学论文的撰写是有着特定的格式跟行文要求的,也有一些常见的通用标准。”
军途:从一封征兵信邮寄开始 妻子出轨之后,跪着求我原谅 穿书七零:娇妻有点辣 重回六零,我能获得宝藏情报 穿进年代短剧,炮灰工具人不干了 税收只在机枪射程内! 离婚后掉马,温总他想父凭子贵 直播看诊?我读毛茸茸成缉凶高手 边水岁月 舔狗十年,我抽身而退她却疯了 出殡日你没时间,我重生崛起你发疯 重回18岁,清冷学神藏不住了 美食:开局女子学院售卖卤肉饭 靠毛茸茸续命后,真千金带飞祖国 我一个兽医啊!你解锁大医系统! 1986:学霸的黄金年代 让你讲故事,没让你说犯罪经历 我,恶毒女配,不走剧情很合理吧 1977,开局女知青以身相许 灵气复苏:烤肠摊主竟是满级大佬
药不成丹只是毒,人不成神终成灰。天道有缺,人间不平,红尘世外,魍魉横行哀尔良善,怒尔不争规则之外,吾来执行。布武天下,屠尽不平手中有刀,心中有情怀中美人,刀下奸雄冷眼红尘,无憾今生。惊天智谋,踏破国仇家恨铁骨柔肠,演绎爱恨情仇绝世神功,屠尽人间不平丹心碧血,谱写兄弟千秋!...
简介白秋意身中诅咒,若没有解药,浑身就如同被人剔骨刮肉一样痛男人的精液,就是她的解药第一个世界闺蜜绿了我之后,我睡了她哥小片段白秋意借字多难听啊,不如我卖身给你吧,她往季裴承那边靠了靠,声音压低,妹妹还是雏哦,哥哥可以给妹妹破个瓜嘛。你看我像是随便给人破瓜的人?季裴承。去床上。季裴承道。你硬了吗?白秋意问。季裴承没说话,直接把她的手牵过来,往胯间按。小弟弟好精神呀,白秋意道,哥就在这里要了妹妹吧,妹妹湿哒哒的走不动。你说话一直这么没遮拦?那要看对谁了,对你是的~阅读小贴士1女主非善类,为达目的可以出卖身体的那种QωQ2女主三观不代表本作者三观QωQ3每个世界的男女主不一定是处QωQ关于收费按千字50的标准收费,每个故事都会免费一些章节关于更新日更,有事会在留言板留言点击我要评分可以给作者投珠每天可以免费投送两颗珍珠哦...
他是学生是老师是医生更是深藏不露的贴身保镖。QQ群583880154...
师父死了,留下美艳师娘,一堆的人打主意,李福根要怎么才能保住师娘呢?...
...
一场人质救援行动中,因为救援失败而一蹶不振的龙牙队员张正选择退役归隐,此后国家神秘的龙牙小组真正意义上失去了最尖锐的兵器。几年后的张正再次出现势必要将这世界搅动得天翻地覆。...