手机浏览器扫描二维码访问
微分几何是三年级的课程。
不过对于老傅来说,提前一些时间学点微分几何而已,算不了什么。
当年他才读大一就雄心勃勃一个人去挑战代数几何。
只是后来发生了一点变故,让他的数学大业中道崩殂。
长那么丑,学人家搞代数几何,真下头!
自己是因为这句话才出师不利身先死的吗?
好吧,当初的自己的确很不成熟。
内心深处或许并不是因为真的对代数几何这些数学内容本身感兴趣,纯粹只是听说只有搞代数几何的,才配站在纯数鄙视链顶端。
然后看了点交换代数代数簇,知道了点类域论导出范畴就到处夸夸其谈。
在别人听说自己在学代数几何后,眼神中流露出钦佩的赞美时,享受那一种所谓的智商上的优越感。
也因为并不是真的喜欢,于是被讽刺了几句就逃到了游戏里面,不敢面对,最后连学位证书都没有拿到。
如果真的是初学者的话,我唯一的建议是,花四年时间把本科数学课程按部就班学一遍再说。
不过话说回来,这位陆兮同学貌似才高一。
高一就进军微分几何,比自己大一尝试代数几何还要超前得多
偏偏他几个问题问下来,陆兮同学的回答都是那么的流利精准,毫无破绽。
比如她提到“流形”时,他几乎能感受到她在讲述这一概念时的成熟感。
这并不像一个仅仅知道定义和公式的学生,而更像是一个已经深入了解这些内容,甚至有过数学研究经验的人。
完全不是那种为了显得自己很牛逼,故弄玄虚的二流子。
可这位陆兮同学才读高一啊。
一个完全没有接受过任何专业训练的素人。
那就只能这样了。
习题集,去吧。
老傅面对勇猛精进的陆兮同学的,排出了三道大题。
他要验一验陆兮同学的成色,是不是如她所展现出来的那样无懈可击。
第一道题:“设M是一个2-维流形,证明流形上的切空间与法向量空间的关系。”
第二道题:“在黎曼流形上,给定一个光滑向量场X,定义X的散度并证明其与测地线的性质之间的关系。”
第三道题:“给定一个n-维流形M,在其上给定一个黎曼度量g。证明度量g可以被唯一扩展到整个M上,使得在每一个局部坐标系下都满足度量条件。”
他后来没拿到学位证书,被已经佝偻了腰的父亲领回去,他才幡然醒悟。
一个人宅在家里,将大学的课程系统性地自学了很长一段时间。
这些题都曾在他的自学笔记里里面。
他如数家珍,烂熟于心。
比如第一道的考核,要求对微分流形的基本概念,如切空间和法向量空间有很好的理解。
属于入门级别的问题。
但如果仅仅刚接触到流形的概念,还是有一定难度的。
因为这道题的解法涉及多个抽象概念的综合运用。
第二道就开始真正现出难度了。
首先,理解黎曼流形上向量场散度的定义就需要一定的基础。它涉及到黎曼度量、局部坐标系下的张量运算以及行列式的知识。
神话世界大冒险 被休后,她被寒皇叔宠上天 重生之医行天下 飞扬年代:从采购员开始 总裁搞错了:三宝妈咪才是白月光 超级仙武 洛杉矶的夜行者陶西 超级黄金指 西游:开局斗翻诸天神佛! 魔塔传奇 日月江山永为明朱瞻垶 我不只是动作巨星 降临 苍崎家的魔法使 我在菜市口斩妖除魔那些年李长生 渔夫的幸福生活 唐枭 从布衣开始一统天下 带着系统闯武侠 我的妹妹是索拉
炮灰是什么?雪兰告诉你,炮灰是用来打别人脸的。凭什么炮灰就要为男女主的感情添砖加瓦,凭什么炮灰就要任人践踏?凭什么炮灰就要为男女主献上膝盖?凭什么炮灰就要成为垫脚石?炮灰不哭,站起来撸!本文男女主身心干净,秉持着宠宠宠的打脸原则,男主始终是一个人哦!...
新码的西南崛起已经上传,欢迎各位亲移驾亲临。这是一个令人发指的故事,这是一个令人发指的人。不说他其它的成就,大学刚毕业,他在纳斯达克,就已经有了两家上市公司,不对,他最近又收购了一家上市公司,哦,还在计划收购另一家。身后,还有一大堆投行追赶着,你的这家网站,什么时候上市?广大投资者也说,这样的网站,一定要接受公...
万人追更,火爆爽文农村小子偶然获得神农传承,从此一飞冲天,成为人中龙。带领大家走上一条致富路。...
群芳谱ltBRgt乖巧婉约的可爱妹子,美丽柔顺的魔门公主ltBRgt骄蛮倔强的异族天骄,心比天高的武林玉女ltBRgt她们最后都属于谁呢?ltBRgt且看年少英俊的少将军,流落江湖的一番奇遇。ltBRgt本书原名玉笛白马。ltfontgt...
一睁眼回到六零年,上一世是孤儿的明暖这一世拥有了父母家人,在成长的过程中,还有一个他,青梅竹马,咋这么腹黑呢!...
作为普通人的许易穿越到神学院的世界,表示压力山大!然而许易意外激活身体里的无限系统,得而穿越各种不同的幻想世界,影视,动漫,小说一切应有尽有。许易面色淡漠,仰视苍天,忽然开口我要这天,再遮不住我眼。我要这地,再埋不了我心。要这众生,都明白我意。要那诸佛,全都烟消云散。苍天mdzz,老子招你惹你啦!...